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This paper presents two genetic algorithm based model refinement methods used for 
vulnerability estimation models. A method presents how model structure refinement is applied 
to obtain models that estimate the cumulative number of vulnerabilities for a certain product. 
In this case, empirical observation of similarities between consecutive versions of the product 
is taken into account. Model structure refinement is presented as procedure. The experimental 
results show how the method is applied and the results are discussed. The second method uses 
an aggregated performance indicator as selection criterion in the genetic algorithm. It is 
shown that simpler models are produced, keeping the quality of estimation comparable with 
more complex ones. Experimental results confirm the hypotheses. 
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Security Metrics 
The ISO 9126 standard [1] defines 

security as an attribute of the functionality, 
related to the ability of a software product to 
prevent unauthorized access intentional or 
unintentional to programs and data. 
An important aspect in assessing security is 
represented by assessing vulnerabilities as 
defined in [2]. Vulnerabilities represent an 
important fraction of the software flaws that 
need to be repaired. The study of 
vulnerability discovery and fixing process is 
necessary for a proper management where 
models are developed to support the decision 
making. The number of discovered 
vulnerabilities may be small in early states, 
may increase in maturity stages of the 
product and finally may decrease, as the 
market looses interest in using the product. 
Also, the number of discovered 
vulnerabilities may increase exponentially, or 
take any other evolution. For software users, 
the number of vulnerabilities is important 
because it decides the number of patches they 
have to apply to the product to keep it safe 
from attackers and this is a time consuming 
activity. 
From the moment a software product is 
launched, it enters the maintenance phase. 
Efforts are made to implement adaptive and 
corrective maintenance including people and 

resources. Recording the number of 
vulnerabilities discovered for a certain 
software product helps estimation of future 
values and for comparison between products 
from the same developer or different 
developers. Public databases like [3], [4] and 
[5] keep records of identified vulnerabilities. 
Data sources may be extracted in order to 
analyze the evolution for a certain software 
product.   
 
2 Refinement of Estimation Models  
There are many factors that influence the 
number of found vulnerabilities in a software 
product, of which some important are: the 
size of the software, the number of 
implemented functions, the market share of 
the product, the time elapsed from the release 
of the product. 
A model for cumulative number of 
vulnerabilities estimation must take into 
account those factors and other ones as well. 
The effort for data collection for such model 
is high. In order to simplify, another factor is 
considered that aggregates the influence of 
all other ones. This factor is time. 
The number of vulnerabilities existing in a 
software product is estimated using models 
developed by specialists. Most of the models 
are adaptations from reliability estimation 
models. They are used for predicting the 
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cumulative number of vulnerabilities, at a 
certain moment in time t, denoted by Ω( t) 
and representing the primitive function of the 
vulnerability distribution function over time,  
starting with the moment of the product 
release date. Common model structures are 
described in [6] and [7]: 
Ω(t) = a*ln(b*t) (thermodynamic model) 
Ω(t) = a/(b*e-ct+1) (logistic model) 
Ω(t) = a*t2+b*t (linear model) 
Ω(t) = a(1-e-bt) (exponential model). 
For each analyzed software product, 
coefficients are estimated and computed 
values are compared with the real ones. Each 
model gives best results for certain software 
products. 
The fitness function FIT used to assess the 
statistical performance of a model is the 
mean squared error.  

In the context of model generation, 
refinement is a procedure that takes a model 
M of complexity C and transforms it to a 
model M’ of complexity C’, such way that 
C>C’ and the fitness of M’ doesn’t differ 
substantially from the fitness of M as 
presented in [8]. The complexity indicator 
takes into account the number of operands 
and operators and the fitness is chosen 
among the existing statistical indicators that 
assess the quality of a model. A comparison 
between software metrics refinement 
techniques is included in [9]. 
 
3 Genetic Algorithm based Model 
Structure Refinement  
When using model generators described in 
[10], the analyst must pay attention to the 
distribution of generated model structures in 
order to find patterns that indicate a model 
structure is more fit than others for the 
purpose of the research. Consider a list of 
model structures S1, S2, …, SL, used to 
estimate the levels of a certain dependent 
variable, according to a list of factors. 
Structure refinement is defined as a 
procedure that takes the initial list of 
structures S1, S2, …, SL and retains a subset 
Si1, Si2, …, SiL’ where L’<L, and the subset 
Si1, Si2, …, SiL’ contains the best structures 
according to a performance criterion. 

There are peculiarities that make the 
evolutionary algorithms fit for this approach 
as presented in [11]. Gene expression 
programming, introduced in [12], has a 
pseudorandom behavior when building the 
initial population; the genetic operators like 
selection, mutation, the exchange of genetic 
material are also applied randomly. When 
running the algorithm for several times, using 
the same dataset, it is observed that the 
number of generated structure types is small, 
the algorithm having a stronger preference 
for generating models from certain structures 
than from others. 
Consider the models M1, M2, …, Mr obtained 
after r generation algorithm runs for a certain 
dataset. A number of n model structures S1, 
S2, …, Sn is obtained, having the relative 
apparition frequency f1, f2, …, fn, 
respectively, the number of runs being 
greater than the number of structures. Each 
structure corresponds to a model which was 
the best after evolving a certain population. 
The list of model structures is sorted in 
descending order according to the frequency 
of apparition, obtaining the list Sk1,Sk2, …, 
Skn, where Sk1 is the most frequent apparition 
and Skn is the structure with the least frequent 
occurrence. A threshold h is defined and the 
first s structures are chosen with respect to 
the relation: 

<h. 
The models Mk1, Mk2, …, Mks are built, 
having the corresponding chosen structures 
Sk1, Sk2, …, Sks and their coefficients are 
estimated using a least squares algorithm.  
For each model performance or fitness FIT is 
computed and the best models are chosen and 
they are subject to further validation of use. 
The experimental results aim to show how 
model structure refinement helps in building 
or choosing a model that is fit to estimate the 
cumulative number of vulnerabilities in a 
software product, denoted by 
CUMULATIVE, when previous versions of 
the product are available. 
Three versions of Apache HTTPD Server, 
1.3, 2.0 and 2.2 are considered. For this open 
source project there is a public section where 
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all the security vulnerabilities are presented 
[11]. Data is collected and datasets are built. 
For Apache 1.3 and 2.0 the evolution of the 
cumulative number of vulnerabilities is given 

in Figure 1. Data is available for over 3700 
days since the initial release for Apache 1.3 
and over 2000 days for Apache 2.0. 

 

 
Fig. 1. Cumulative number of vulnerabilities discovered and fixed for Apache 1.3 and 2.0 

 
For apache 2.2 the evolution of the 
cumulative number of vulnerabilities is given 

in Figure 2. The dataset is shorter, containing 
records for over 800 days. 

 

.  
Fig. 2. The evolution of vulnerabilities for Apache 2.2 and the comparison between the three 

products for a similar period 
 
The comparison between the evolutions of 
the process for each version for the first 1000 
days is also presented in Figure 2. 
The evolution of vulnerability discovery and 
fixing process shows similar evolution in a 
similar time interval. The correlation 
coefficient between interpolated values 
recorded for a certain version and all the 
others is greater than 0.9, which conducts to 
an empirical conclusion that the vulnerability 
discovery and fixing process follows a 

similar evolution for each version of the 
product. 
The gene expression programming is used to 
build models to fit the recorded data. The 
generator is run a number of times for each 
dataset, such way the analyst observes a 
particular distribution of the generated model 
structures. The model generation process 
conducted to distributions of models 
structures for Apache 1.3 and Apache 2.0, as 
presented in Table 1. 

 
Table 1. Model structure distributions 

Apache 1.3 Apache 2.0 
S1: TIMEa 50% S1’: TIMEA 34.78% 
S2: A*TIME 4 33.33% S2’: A*TIMEB 26.08% 
S3: A*ln(TIME) 16.66% S3’: A*TIME 17.39% 
 S4’: TIMEA+B 8.69% 
 S5’: A*TIMEB+C 8.69% 
 S6’:A*TIME+B 4.34% 
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After the parameter estimation, for Apache 
1.3 and Apache 2.0, the models presented in 

Table 2 are obtained. 

 
Table 2. Estimated models 

Apache 1.3 Apache 2.0 
MS1: CUMULATIVE(TIME)=TIME0.534  
FIT=60.31 

MS1’: CUMULATIVE = TIME0.495  
FIT=24.37  

MS2: CUMULATIVE(TIME)=0.027*TIME  
FIT=51.93 

MS2’: CUMULATIVE = 0.14 * TIME0.772  
FIT= 4.36 

MS3:CUMULATIVE(TIME)=6.852*ln(TIME)  
FIT=345. 

MS3’: CUMULATIVE = 0.027*TIME  
FIT = 13.28 

 MS4’:  CUMULATIVE = TIME0.527-7.796 
 FIT=6.89 

 MS5’: CUMULATIVE = 0.264*TIME0.695-2.619 
 FIT=3.59 

 MS6’: CUMULATIVE = 0.025*TIME+2.972 
 FIT=9.75 

 
As seen, parameter values are very similar 
both for TIMEA model structure type and 
A*TIME. In the case of the linear model, the 
slope is identical. Taking into account the 
similarity between the particular evolutions 
of the vulnerability fixing and discovery for 
all three products it is considered that S1 and 
S2 are fit structures to build models to make 
estimations also for Apache 2.2. The 
estimation of coefficients for Apache 2.2 
gives: 
M1: CUMULATIVE(TIME) = TIME0.359  
FIT=11.06 
M2 CUMULATIVE(TIME)=0.016*TIME 
FIT= 1.40 
In [13] the most frequently generated models 
are statistically validated for their 
corresponding datasets. For Apache 2.2 the 
models are validated using Chi Squared X2 
test. For a risk of 5%, for the Apache 2.2 
dataset, the threshold value of X2 is 9.48. X2 
computed for M1 is 15.77 which fall over the 
threshold, which means it is not statistically 
significant. The X2 value computed for M2 
model is 1.05 which is a significantly smaller 
than the threshold and the model is validated. 
The statistical validation shows that for the 
first period in the life of Apache 2.2 software 
product, the M2 linear model is fit to estimate 
the number of vulnerabilities. The 
cumulative number of discovered and fixed 
vulnerabilities is increasing in rate with time. 
When looking at the graphs of the other 

versions it is observed that there is also a 
linear trend after the launch of the product. 
M1 model must not be abandoned. It’s 
performance must be assessed in practice, as 
there is a strong resemblance between the 
three products. M1 model might be more fit 
for estimation in the second part of the 
product life, when the evolution of 
cumulative number of vulnerabilities starts to 
reduce its slope. 
New model structure refinement must be 
performed each time new data is available, to 
reestimate model coefficients or to observe if 
there is a change in the model structure when 
the phenomenon changes its evolution.   
 
4 Genetic Algorithm based Model 
Structure Refinement by Adapting 
Selection Criterion 
Applying the genetic operators iteratively 
leads to selecting the best individual of a 
generation based on a performance criterion 
which takes into account the quality of the 
estimate on the data set considered. Also, the 
selection of individuals that give rise to new 
generations is all due to the same 
performance indicator; the individuals have a 
probability of selection proportional to the 
estimation quality of the corresponding 
model demonstrates. 
A problem with the construction of analytical 
expressions using gene expression 
programming is obtaining expressions with 
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an apparent high complexity, which is in 
contradiction with the objectives of refining. 
However, the gross model provided by the 
algorithm loses complexity, if, as expected, it 
is in a form they are made all operations 
between the original constants. 
The criterion used in selecting models and 
individuals population of chromosomes is the 
mean squared error, MSE, which is a 
criterion of minimized. By their nature, 
genetic algorithms generate analytical 
expressions of high complexity.  
A solution to reduce complexity of generated 
models is a convenient choice of algorithm 
specific parameters, if analyst recourses to 
one or more of the following options: 
• restricting the list of variables  
• restricting the list of operators, 

recommending the use of operators with 
small number of arguments  

• limiting the size of a chromosome using 
chromosome with a single gene or small 
number of genes  

• limiting maximum size of a gene by 
choosing a small value for the gene head 
parameter. 

There are cases where small values chosen 
for the above parameters lead to adverse 
results relating to the identification of links, 
failure of operations between initial constant 
to restore true values of coefficients. 
To obtain refining, the use of the aggregate 
indicator is proposed, which takes into 
account both aspects identified in the model, 
its performance statistics and complexity of 
the expression. A proposed structure for the 
aggregated performance AP indicator is 
calculated using the formula used in [14]: 

 
AP(M) = MSE(M)p . C(M)q, where 

 
MSE(M) –MSE indicator for model M; 
C(M) – complexity of M. 
 p – importance coefficient for statistical 
performance indicator, p>=0 
q - importance coefficient for complexity, 
q>=0. 
Aggregate indicator of performance, AP 

retains the minimum criteria that needs to be 
fulfilled as complexity must be minimized, 
deviations should be minimized, and the 
composition by multiplication in the ranges 
of values for the operands lead to an 
increasing function for both values. By using 
AP indicator the algorithm is forced to 
promote individuals which have developed 
both characteristics of good estimation of the 
phenomenon and small complexity, serving 
the objectives of refining models. Depending 
on the values chosen for parameters p and q, 
the importance given to each criterion shall 
be considered. 
The complexity of the model obtained using 
aggregate indicator as selection criterion in 
the genetic algorithm drops and the capacity 
to estimate the phenomenon studied remains 
comparable to that of complex models 
obtained taking into account only the 
statistical performance indicators. 
Another indicator of aggregate performance 
structure has the form presented in [10]: 
AP’(M) =MSEp+Cq, 
where elements appear with the same 
meaning. 
The criterion used by the algorithm for this 
type of aggregated performance indicator is 
also to be minimized. Generated model 
distribution is studied after running for a 
number of times the algorithm for a data set, 
results are presented in Table 3. 
Models are correlated with the corresponding 
model structure as shown in Table 4.  
Model structures show different frequencies 
of apparition as shown in Table 5.  
The average complexity of the generated 
model structures in this sample is 2.991324. 
The average complexity of the generated 
model structures in the previous method is 
4.795826. There is a decrease in the average 
complexity of models generated, highlighting 
the simple models with a better quality of 
estimates, having their appearance with an 
increased frequency compared to refining 
method of structure based on only a 
statistical indicator of performance. Structure 
ranking is shown in Table 6. 
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Table 3. Generated models using as fitness function AP’ with p=1 q=2 
ID Model expression Complexity AP’ 

(p=1, q=2) 
M1 (TIME/(-0.7917/-0.0318)) 6.75 224.08 
M2 ((TIME^0.3053)/0.3053) 6.75 118.00 
M3 (TIME^0.4994) 2 29.01 
M4 (TIME^0.4927) 2 28.57 
M5 (TIME^exp((-0.3632+-0.3632))) 9.50 118.87 
M6 ((TIME^exp(0.2926))^0.3492) 9.50 135.06 
M7 (TIME*0.0257) 2 18.66 
M8 (TIME^0.3737) 2 248.80 
M9 (TIME^exp(-0.7347)) 4 47.57 
M10 ((TIME^0.4151)+0.4151) 6.75 188.14 
M11 ((TIME^0.4894)+-0.1585) 6.75 70.62 
M12 (TIME^0.4637) 2 54.73 
M13 (0.0827*(TIME*0.1698)) 6.75 213.66 
M14 (TIME^(exp(0.3643)*0.3643)) 9.50 150.33 
M15 (TIME^0.3895) 2 212.20 
M16 (TIME^(0.3712^0.6982)) 6.75 71.03 
M17 (((-0.6582+0.3100)*TIME)*-0.0977) 12.75 223.07 
M18 ((TIME^0.0814)/0.0814) 6.75 225.18 
M19 ((0.6948+TIME)^(0.6948* 0.6948)) 12.75 191.84 
M20 (((-0.9328+0.4791)+ 0.4791)* TIME) 12.75 178.25 
M21 (TIME^0.4637) 2 54.73 
M22 (0.6893+(TIME^exp(-0.8005))) 9.50 161.28 
M23 (TIME^0.4115) 2 160.73 
M24 (TIME^(exp(exp(0.5545))^-0.4340)) 12.75 205.19 
M25 (-0.0318/(-0.7917/TIME)) 6.75 224.08 
M26 ((TIME*-0.1369)*-0.2264) 6.75 74.56 
 

Table 4. Correspondence between generated models and identified structures 
Model Structure Model Structure 
M1 A*TIME M14 TIMEA 
M2 A*TIMEB M15 TIMEA 
M3 TIMEA M16 TIMEA 
M4 TIMEA M17 A*TIME 
M5 TIMEA M18 A*TIMEB 
M6 TIMEA M19 (A+TIME)B 

M7 A*TIME M20 A*TIME 
M8 TIMEA M21 TIMEA 
M9 TIMEA M22 TIMEA+B 
M10 TIMEA+B M23 TIMEA 
M11 TIMEA+B M24 TIMEA 
M12 TIMEA M25 A*TIME 
M13 A*TIME M26 A*TIME 
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Table 5. Apparition frequencies of model structures 
Model Structure Complexity Absolute frequency Relative Frequency 

A*TIME 2 7 0.2692307 
A*TIMEB 6.754888 2 0.076923 
TIMEA 2 13 0.5 
TIMEA+B 6.754888 3 0.1153846 
(A+TIME)B 4 1 0.0384615 
Total - 26 1 

 
Table 6 Structure ranking 

Structure ID  Model Structure Absolute 
frequency 

Relative 
Frequency 

Cumulated 
frequency 

S1 TIMEA 13 0.5 0.5 
S2 A*TIME 7 0.2692 0.769231 
S3 TIMEA+B 3 0.1153 0.884615 
S4 A*TIMEB 2 0.0769 0.961538 
S5 (A+TIME)B 1 0.0384 1 

 
Table 7. Generated models for TIMEA structure 

Generated model Evolved coefficient 
(TIME^exp(-0.72498476445907)) 0.484331948 
(TIME^0.451378393662804) 0.451378393662804 
((TIME^0.519262224211945)^0.957872770707064) 0.497387145 
(TIME^exp(-0.616214980658244)) 0.539984426 
(TIME^0.530303061255395) 0.530303061255395 
((TIME^0.72121787337643)^0.72121787337643) 0.520155221 
(TIME^exp(-0.821984323590055)) 0.439558562 
(TIME^0.472517949749026) 0.472517949749026 
(TIME^0.514797061921468) 0.514797061921468 
((TIME^exp(0.349290777626117))^0.349290777626117) 0.495315794 
(TIME^0.470532909254792) 0.470532909254792 
(TIME^(-0.321436142698599/-0.733539882923262)) 0.43819859 
(TIME^exp(-0.644560026770718)) 0.52489343 
(TIME^0.469861407983052) 0.469861407983052 
(TIME^0.462390707089748) 0.462390707089748 
(TIME^0.476668837702213) 0.476668837702213 
(TIME^exp(-0.644560026770718)) 0.52489343 
(TIME^(0.681852963604896*0.681852963604896)) 0.464923464 
(TIME^0.489165376633948) 0.489165376633948 
(TIME^0.500250477111084) 0.500250477111084 
(TIME^exp(-0.662999510608148)) 0.515303356 
(TIME^0.471989210914815) 0.471989210914815 
 
The first two structures that the algorithm 
proposes are also presented using the 
structure refinement method. Using the 
aggregate performance indicator as a 
criterion for ordering those simpler structures 
represent about 77% of all models generated. 

The MS1 model that corresponds to S1 
structure has the form:  
MS1: CUMULATIVE = TIME0.495. 
The MS2 model is obtained from S2 structure 
after estimating the coefficients and has the 
form: 
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MS2: CUMULATIVE = 0.027*TIME. 
The characteristics of those models have 
been presented previously. 
To study the influence of using the 
aggregated performance indicator over the 
distribution of evolved constants and the 

placement of classically estimated 
coefficients, the generated models 
corresponding to the TIMEA structure are 
presented in Table 7. 
Descriptive statistics is presented in Table 8. 

 
Table 8. Descriptive statistics for model coefficients 

Indicator Value 
Mean 0.488855 
Median 0.486749 
Mode 0.524893 
Standard deviation 0.000887 
Range 0.101786 
Minimum 0.438199 
Maximum 0.539984 
Sum 10.7548 
Number 22 
Trusted range(95.0%) 0.013201 

 
With a probability of 95%, the mean of the 
evolved coefficient population is range 
[0.488855-0.013201; 0.488855+0.013201], 
containing the value of the classically 
estimated coefficient. It is shown that using 
the aggregated performance indicator as 
selection criterion does not influence the 
capacity of the algorithm to converge to valid 
coefficients.  
 
5 Conclusion 
Model structure refinement helps analysts by 
automating model generation process, using 
verified generation algorithms and by 
automating model selection process, using 
objective criteria for selection. 
Model structure refinement is necessary in 
order to reduce the almost infinite solution 
space containing models that estimate the 
value of a dependent variable, to a small set. 
Using genetic algorithms for model 
generation, the analyst has control over the 
parameters of the algorithm, over the operand 
types, over the selection criteria, having the 
instruments to create less complex, but fit 
and easy to interpret models. The best model 
is recorded for a large number of algorithm 
runs while observing if there are model 

structures that have a higher frequency of 
apparition.  The set of selected structures 
with higher occurrence is used to build 
models.  
Validation is necessary, when choosing a 
model, but also, during effective usage, the 
results obtained through the model must be 
compared with the real recorded values. If 
the differences are large, a new estimation of 
coefficients or a new model structure 
refinement must be done to adapt to the new 
evolution of the process. 
The aggregated performance indicator shows 
its usefulness for model selection, in order to 
respect the principles of model refinement. 
The obtained results indicate that it does not 
affect the ability of the algorithm to give a 
good solution for the given dataset. 
Both proposed methods highlight the fact 
that the quality of the solutions increases as 
the algorithm is run for a sufficient number 
of times. This way, the negative influence of 
random elements inside the algorithm is 
removed. 
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